Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12652, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542057

RESUMO

Scanning Hall microscopy has been used to search for spontaneous edge fields in geometrically shaped mesa structures etched into the ab surface of Sr2RuO4 single crystals in order to test recent theories of the direction of edge current flow as a function of facet orientation and band filling. We find no evidence for spontaneous edge fields in any of our mesa structures above our experimental noise floor of ± 25 mG. We do, however, observe pronounced vortex clustering at low fields and temperatures, consistent with the established semi-Meissner scenario whereby a long range attractive component to the vortex-vortex interaction arises due, for example, to the multiband nature of the superconductivity. We also see clear evidence for the formation of a square vortex lattice inside square mesa structures above 1.3 K. Our results are discussed in terms of recent relevant experimental results and theoretical predictions.

2.
Dalton Trans ; 49(29): 10069-10083, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658230

RESUMO

Two new lithium-magnesium phosphates LiMg6(PO4)3(P2O7) and Li(Mg5.62Sc0.19Li0.19)(PO4)3(P2O7) were synthesized by a solid-phase method. Using high-resolution time-of-flight neutron powder diffraction (TOF NPD) and X-ray powder diffraction (XRPD), we established that these phosphates have a Pnma orthorhombic structure with the cell parameters a = 9.14664(5) Å, b = 18.83773(8) Å, c = 8.27450(4) Å, and V = 1425.71(1) Å3 and a = 9.14516(5) Å, b = 18.84222(9) Å, c = 8.28204(4) Å, and V = 1427.12(1) Å3, respectively. The crystal structures can be described by stacking of the [Mg6O18]∞ or [Mg5.62Sc0.19Li0.19O18]∞ wavy layers, which are parallel to the (100) direction and interconnected through PO4 tetrahedra and P2O7 groups to form a 3D-framework. The Li atoms are located in large tunnels formed in a 3D lattice, which contributes to lithium diffusion. AC impedance spectroscopy analysis shows that LiMg6(PO4)3(P2O7) and Li(Mg5.62Sc0.19Li0.19)(PO4)3(P2O7) have a Li ion conductivity of 3.6 × 10-4 S cm-1 and 1.7 × 10-4 S cm-1 at 950 °C, with an activation energy of 1.28 eV and 1.55 eV, respectively. NMR MAS studies confirmed the coexistence of pyro- and orthogroups in the structure of both phases and two lithium positions in Li(Mg5.62Sc0.19Li0.19)(PO4)3(P2O7). The first-principles method was used to study the electronic structure and stability of the two phases. The calculated formation enthalpies demonstrated that Sc is a stabilizing impurity in LiMg6(PO4)3(P2O7), while a strong destabilization of olivine LiMgPO4 is observed upon doping with Sc. This explains the failure to synthesize Sc-doped olivine. The new phosphate LiMg6(PO4)3(P2O7) is a dielectric with a band gap of 5.35 eV, which decreases to 4.85 eV due to the appearance of a localized Sc 3d peak upon doping with Sc. These findings are consistent with the results obtained by UV-Vis spectroscopy. The new phase may be a good optical matrix similar to LiMgPO4.

3.
Phys Rev Lett ; 120(7): 076602, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542933

RESUMO

We report the results of a combined study of the normal-state resistivity and superconducting transition temperature T_{c} of the unconventional superconductor Sr_{2}RuO_{4} under uniaxial pressure. There is strong evidence that, as well as driving T_{c} through a maximum at ∼3.5 K, compressive strains ϵ of nearly 1% along the crystallographic [100] axis drive the γ Fermi surface sheet through a van Hove singularity, changing the temperature dependence of the resistivity from T^{2} above, and below the transition region to T^{1.5} within it. This occurs in extremely pure single-crystals in which the impurity contribution to the resistivity is <100 nΩ cm, so our study also highlights the potential of uniaxial pressure as a more general probe of this class of physics in clean systems.

4.
Nat Commun ; 8(1): 1006, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044121

RESUMO

The premartensite phase of shape memory and magnetic shape memory alloys (MSMAs) is believed to be a precursor state of the martensite phase with preserved austenite phase symmetry. The thermodynamic stability of the premartensite phase and its relation to the martensitic phase is still an unresolved issue, even though it is critical to the understanding of the functional properties of MSMAs. We present here unambiguous evidence for macroscopic symmetry breaking leading to robust Bain distortion in the premartensite phase of 10% Pt-substituted Ni2MnGa. We show that the robust Bain-distorted premartensite (T2) phase results from another premartensite (T1) phase with preserved cubic-like symmetry through an isostructural phase transition. The T2 phase finally transforms to the martensite phase with additional Bain distortion on further cooling. Our results demonstrate that the premartensite phase should not be considered as a precursor state with the preserved symmetry of the cubic austenite phase.

5.
Phys Rev Lett ; 116(19): 197003, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232037

RESUMO

Here we demonstrate how the Fermi surface topology and quantum many-body interactions can be manipulated via epitaxial strain in the spin-triplet superconductor Sr_{2}RuO_{4} and its isoelectronic counterpart Ba_{2}RuO_{4} using oxide molecular beam epitaxy, in situ angle-resolved photoemission spectroscopy, and transport measurements. Near the topological transition of the γ Fermi surface sheet, we observe clear signatures of critical fluctuations, while the quasiparticle mass enhancement is found to increase rapidly and monotonically with increasing Ru-O bond distance. Our work demonstrates the possibilities for using epitaxial strain as a disorder-free means of manipulating emergent properties, many-body interactions, and potentially the superconductivity in correlated materials.

6.
Phys Rev Lett ; 105(26): 267205, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21231712

RESUMO

We investigate the nonequilibrium behavior of the spin-ice Dy2Ti2O7 by studying its magnetization as a function of the field sweep rate. Below the enigmatic ''freezing'' temperature T(equil)≈600 mK, we find that even the slowest sweeps fail to yield the equilibrium magnetization curve and instead give an initially much flatter curve. For higher sweep rates, the magnetization develops sharp steps accompanied by similarly sharp peaks in the temperature of the sample. We ascribe the former behavior to the energy barriers encountered in the magnetization process, which proceeds via flipping of spins on filaments traced out by the field-driven motion of the gapped, long-range interacting magnetic monopole excitations. The peaks in temperature result from the released Zeeman energy not being carried away efficiently; the resulting heating triggers a chain reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...